home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
C/C++ Interactive Reference Guide
/
C-C++ Interactive Reference Guide.iso
/
c_ref
/
csource4
/
290_01
/
dfa.c
< prev
next >
Wrap
C/C++ Source or Header
|
1990-05-14
|
13KB
|
479 lines
/* dfa - DFA construction routines */
/*
* Copyright (c) 1987, the University of California
*
* The United States Government has rights in this work pursuant to
* contract no. DE-AC03-76SF00098 between the United States Department of
* Energy and the University of California.
*
* This program may be redistributed. Enhancements and derivative works
* may be created provided the new works, if made available to the general
* public, are made available for use by anyone.
*/
#include "flexdef.h"
#include "dfa.h"
#include "misc.h"
#include "ecs.h"
/* epsclosure - construct the epsilon closure of a set of ndfa states
*
* synopsis
* int t[current_max_dfa_size], numstates, accset[accnum + 1], nacc;
* int hashval;
* int *epsclosure();
* t = epsclosure( t, &numstates, accset, &nacc, &hashval );
*
* NOTES
* the epsilon closure is the set of all states reachable by an arbitrary
* number of epsilon transitions which themselves do not have epsilon
* transitions going out, unioned with the set of states which have non-null
* accepting numbers. t is an array of size numstates of nfa state numbers.
* Upon return, t holds the epsilon closure and numstates is updated. accset
* holds a list of the accepting numbers, and the size of accset is given
* by nacc. t may be subjected to reallocation if it is not large enough
* to hold the epsilon closure.
*
* hashval is the hash value for the dfa corresponding to the state set
*/
int *epsclosure( t, ns_addr, accset, nacc_addr, hv_addr )
int *t, *ns_addr, accset[], *nacc_addr, *hv_addr;
{
register int stkpos, ns, tsp;
int numstates = *ns_addr, nacc, hashval, transsym, nfaccnum;
int stkend, nstate;
static int did_stk_init = false, *stk;
#define MARK_STATE(state) \
trans1[state] = trans1[state] - MARKER_DIFFERENCE;
#define IS_MARKED(state) (trans1[state] < 0)
#define UNMARK_STATE(state) \
trans1[state] = trans1[state] + MARKER_DIFFERENCE;
#define CHECK_ACCEPT(state) \
{ \
nfaccnum = accptnum[state]; \
if ( nfaccnum != NIL ) \
accset[++nacc] = nfaccnum; \
}
#define DO_REALLOCATION \
{ \
current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \
++num_reallocs; \
t = reallocate_integer_array( t, current_max_dfa_size ); \
stk = reallocate_integer_array( stk, current_max_dfa_size ); \
} \
#define PUT_ON_STACK(state) \
{ \
if ( ++stkend >= current_max_dfa_size ) \
DO_REALLOCATION \
stk[stkend] = state; \
MARK_STATE(state) \
}
#define ADD_STATE(state) \
{ \
if ( ++numstates >= current_max_dfa_size ) \
DO_REALLOCATION \
t[numstates] = state; \
hashval = hashval + state; \
}
#define STACK_STATE(state) \
{ \
PUT_ON_STACK(state) \
CHECK_ACCEPT(state) \
if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \
ADD_STATE(state) \
}
if ( ! did_stk_init )
{
stk = allocate_integer_array( current_max_dfa_size );
did_stk_init = true;
}
nacc = stkend = hashval = 0;
for ( nstate = 1; nstate <= numstates; ++nstate )
{
ns = t[nstate];
/* the state could be marked if we've already pushed it onto
* the stack
*/
if ( ! IS_MARKED(ns) )
PUT_ON_STACK(ns)
CHECK_ACCEPT(ns)
hashval = hashval + ns;
}
for ( stkpos = 1; stkpos <= stkend; ++stkpos )
{
ns = stk[stkpos];
transsym = transchar[ns];
if ( transsym == SYM_EPSILON )
{
tsp = trans1[ns] + MARKER_DIFFERENCE;
if ( tsp != NO_TRANSITION )
{
if ( ! IS_MARKED(tsp) )
STACK_STATE(tsp)
tsp = trans2[ns];
if ( tsp != NO_TRANSITION )
if ( ! IS_MARKED(tsp) )
STACK_STATE(tsp)
}
}
}
/* clear out "visit" markers */
for ( stkpos = 1; stkpos <= stkend; ++stkpos )
{
if ( IS_MARKED(stk[stkpos]) )
{
UNMARK_STATE(stk[stkpos])
}
else
flexfatal( "consistency check failed in epsclosure()" );
}
*ns_addr = numstates;
*hv_addr = hashval;
*nacc_addr = nacc;
return ( t );
}
/* increase_max_dfas - increase the maximum number of DFAs */
void increase_max_dfas()
{
int old_max = current_max_dfas;
current_max_dfas += MAX_DFAS_INCREMENT;
++num_reallocs;
base = reallocate_integer_array( base, current_max_dfas );
def = reallocate_integer_array( def, current_max_dfas );
dfasiz = reallocate_integer_array( dfasiz, current_max_dfas );
accsiz = reallocate_integer_array( accsiz, current_max_dfas );
dhash = reallocate_integer_array( dhash, current_max_dfas );
todo = reallocate_integer_array( todo, current_max_dfas );
dss = reallocate_intptr_array( dss, current_max_dfas );
dfaacc = reallocate_dfaacc_union( dfaacc, current_max_dfas );
/* fix up todo queue */
if ( todo_next < todo_head )
{ /* queue was wrapped around the end */
register int i;
for ( i = 0; i < todo_next; ++i )
todo[old_max + i] = todo[i];
todo_next += old_max;
}
}
/* snstods - converts a set of ndfa states into a dfa state
*
* synopsis
* int sns[numstates], numstates, newds, accset[accnum + 1], nacc, hashval;
* int snstods();
* is_new_state = snstods( sns, numstates, accset, nacc, hashval, &newds );
*
* on return, the dfa state number is in newds.
*/
int snstods( sns, numstates, accset, nacc, hashval, newds_addr )
int sns[], numstates, accset[], nacc, hashval, *newds_addr;
{
int didsort = 0;
register int i, j;
int newds, *oldsns;
for ( i = 1; i <= lastdfa; ++i )
if ( hashval == dhash[i] )
{
if ( numstates == dfasiz[i] )
{
oldsns = dss[i];
if ( ! didsort )
{
/* we sort the states in sns so we can compare it to
* oldsns quickly. we use bubble because there probably
* aren't very many states
*/
bubble( sns, numstates );
didsort = 1;
}
for ( j = 1; j <= numstates; ++j )
if ( sns[j] != oldsns[j] )
break;
if ( j > numstates )
{
++dfaeql;
*newds_addr = i;
return ( 0 );
}
++hshcol;
}
else
++hshsave;
}
/* make a new dfa */
if ( ++lastdfa >= current_max_dfas )
increase_max_dfas();
newds = lastdfa;
if ( ! (dss[newds] = (int *) malloc( (unsigned) ((numstates + 1) * sizeof( int
)) )) )
flexfatal( "dynamic memory failure in snstods()" );
/* if we haven't already sorted the states in sns, we do so now, so that
* future comparisons with it can be made quickly
*/
if ( ! didsort )
bubble( sns, numstates );
for ( i = 1; i <= numstates; ++i )
dss[newds][i] = sns[i];
dfasiz[newds] = numstates;
dhash[newds] = hashval;
if ( nacc == 0 )
{
dfaacc[newds].dfaacc_state = 0;
accsiz[newds] = 0;
}
else if ( reject )
{
/* we sort the accepting set in increasing order so the disambiguating
* rule that the first rule listed is considered match in the event of
* ties will work. We use a bubble sort since the list is probably
* quite small.
*/
bubble( accset, nacc );
dfaacc[newds].dfaacc_state =
(int *) malloc( (unsigned) ((nacc + 1) * sizeof( int )) );
if ( ! dfaacc[newds].dfaacc_state )
flexfatal( "dynamic memory failure in snstods()" );
/* save the accepting set for later */
for ( i = 1; i <= nacc; ++i )
dfaacc[newds].dfaacc_set[i] = accset[i];
accsiz[newds] = nacc;
}
else
{ /* find lowest numbered rule so the disambiguating rule will work */
j = accnum + 1;
for ( i = 1; i <= nacc; ++i )
if ( accset[i] < j )
j = accset[i];
dfaacc[newds].dfaacc_state = j;
}
*newds_addr = newds;
return ( 1 );
}
/* symfollowset - follow the symbol transitions one step
*
* synopsis
* int ds[current_max_dfa_size], dsize, transsym;
* int nset[current_max_dfa_size], numstates;
* numstates = symfollowset( ds, dsize, transsym, nset );
*/
int symfollowset( ds, dsize, transsym, nset )
int ds[], dsize, transsym, nset[];
{
int ns, tsp, sym, i, j, lenccl, ch, numstates;
int ccllist;
numstates = 0;
for ( i = 1; i <= dsize; ++i )
{ /* for each nfa state ns in the state set of ds */
ns = ds[i];
sym = transchar[ns];
tsp = trans1[ns];
if ( sym < 0 )
{ /* it's a character class */
sym = -sym;
ccllist = cclmap[sym];
lenccl = ccllen[sym];
if ( cclng[sym] )
{
for ( j = 0; j < lenccl; ++j )
{ /* loop through negated character class */
ch = ccltbl[ccllist + j];
if ( ch > transsym )
break; /* transsym isn't in negated ccl */
else if ( ch == transsym )
/* next 2 */ goto bottom;
}
/* didn't find transsym in ccl */
nset[++numstates] = tsp;
}
else
for ( j = 0; j < lenccl; ++j )
{
ch = ccltbl[ccllist + j];
if ( ch > transsym )
break;
else if ( ch == transsym )
{
nset[++numstates] = tsp;
break;
}
}
}
else if ( sym >= 'A' && sym <= 'Z' && caseins )
flexfatal( "consistency check failed in symfollowset" );
else if ( sym == SYM_EPSILON )
{ /* do nothing */
}
else if ( ecgroup[sym] == transsym )
nset[++numstates] = tsp;
bottom:
;
}
return ( numstates );
}
/* sympartition - partition characters with same out-transitions
*
* synopsis
* integer ds[current_max_dfa_size], numstates, duplist[numecs];
* symlist[numecs];
* sympartition( ds, numstates, symlist, duplist );
*/
void sympartition( ds, numstates, symlist, duplist )
int ds[], numstates, duplist[];
int symlist[];
{
int tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich;
/* partitioning is done by creating equivalence classes for those
* characters which have out-transitions from the given state. Thus
* we are really creating equivalence classes of equivalence classes.
*/
for ( i = 1; i <= numecs; ++i )
{ /* initialize equivalence class list */
duplist[i] = i - 1;
dupfwd[i] = i + 1;
}
duplist[1] = NIL;
dupfwd[numecs] = NIL;
for ( i = 1; i <= numstates; ++i )
{
ns = ds[i];
tch = transchar[ns];
if ( tch != SYM_EPSILON )
{
if ( tch < -lastccl || tch > CSIZE )
flexfatal( "bad transition character detected in sympartition()" );
if ( tch > 0 )
{ /* character transition */
mkechar( ecgroup[tch], dupfwd, duplist );
symlist[ecgroup[tch]] = 1;
}
else
{ /* character class */
tch = -tch;
lenccl = ccllen[tch];
cclp = cclmap[tch];
mkeccl( ccltbl + cclp, lenccl, dupfwd, duplist, numecs );
if ( cclng[tch] )
{
j = 0;
for ( k = 0; k < lenccl; ++k )
{
ich = ccltbl[cclp + k];
for ( ++j; j < ich; ++j )
symlist[j] = 1;
}
for ( ++j; j <= numecs; ++j )
symlist[j] = 1;
}
else
for ( k = 0; k < lenccl; ++k )
{
ich = ccltbl[cclp + k];
symlist[ich] = 1;
}
}
}
}
}